Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Prod Res ; : 1-18, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38586940

RESUMEN

Herein, we isolated five natural alkaloids, iso-corydine (iso-CORY), corydine (CORY), sanguinarine (SAN), chelerythrine (CHE) and magnoflorine (MAG), from traditional medicinal herb Dicranostigma leptopodum (Maxim.) Fedde (whole herb) and elucidated their structures. Then we synthesised G5. NHAc-PBA as targeting dendrimer platform to encapsulate the alkaloids into G5. NHAc-PBA-alkaloid complexes, which demonstrated alkaloid-dependent positive zeta potential and hydrodynamic particle size. G5. NHAc-PBA-alkaloid complexes demonstrated obvious breast cancer MCF-7 cell targeting effect. Among the G5. NHAc-PBA-alkaloid complexes, G5.NHAc-PBA-CHE (IC50=13.66 µM) demonstrated the highest MCF-7 cell inhibition capability and G5.NHAc-PBA-MAG (IC50=24.63 µM) had equivalent inhibitory effects on cell proliferation that comparable to the level of free MAG (IC50=23.74 µM), which made them the potential breast cancer targeting formulation for chemotherapeutic application. This work successfully demonstrated a pharmaceutical research model of 'natural bioactive product isolation-drug formulation preparation-breast cancer cell targeting inhibition'.

2.
Biomater Sci ; 12(6): 1346-1356, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38362780

RESUMEN

Glioma, as a disease of the central nervous system, is difficult to be treated due to the presence of the blood-brain barrier (BBB) that can severely hamper the efficacy of most therapeutic agents. Hence, drug delivery to glioma in an efficient, safe, and specifically targeted manner is the key to effective treatment of glioma. With the advances in nanotechnology, targeted drug delivery systems have been extensively explored to deliver chemotherapeutic agents, nucleic acids, and contrast agents. Among these nanocarriers, dendrimers have played a significant role since they possess highly branched structures, and are easy to be decorated, thus offering numerous binding sites for various drugs and ligands. Dendrimers can be designed to cross the BBB for glioma targeting, therapy or theranostics. In this review, we provide a concise overview of dendrimer-based carrier designs including dendrimer surface modification with hydroxyl termini, peptides, and transferrin etc. for glioma imaging diagnostics, chemotherapy, gene therapy, or imaging-guided therapy. Finally, the future perspectives of dendrimer-based glioma theraputics are also briefly discussed.


Asunto(s)
Dendrímeros , Glioma , Humanos , Barrera Hematoencefálica/metabolismo , Dendrímeros/química , Medicina de Precisión , Glioma/diagnóstico por imagen , Glioma/tratamiento farmacológico , Glioma/metabolismo , Sistemas de Liberación de Medicamentos/métodos
3.
Mater Horiz ; 11(1): 12-36, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37818593

RESUMEN

With the increasing and aging of global population, there is a dramatic rise in the demand for implants or substitutes to rehabilitate bone-related disorders which can considerably decrease quality of life and even endanger lives. Though titanium and its alloys have been applied as the mainstream material to fabricate implants for load-bearing bone defect restoration or temporary internal fixation devices for bone fractures, it is far from rare to encounter failed cases in clinical practice, particularly with pathological factors involved. In recent years, smart stimuli-responsive (SSR) strategies have been conducted to functionalize titanium implants to improve bone regeneration in pathological conditions, such as bacterial infection, chronic inflammation, tumor and diabetes mellitus, etc. SSR implants can exert on-demand therapeutic and/or pro-regenerative effects in response to externally applied stimuli (such as photostimulation, magnetic field, electrical and ultrasound stimulation) or internal pathology-related microenvironment changes (such as decreased pH value, specific enzyme secreted by bacterial and excessive production of reactive oxygen species). This review summarizes recent progress on the material design and fabrication, responsive mechanisms, and in vitro and in vivo evaluations for versatile clinical applications of SSR titanium implants. In addition, currently existing limitations and challenges and further prospective directions of these strategies are also discussed.


Asunto(s)
Calidad de Vida , Titanio , Prótesis e Implantes , Regeneración Ósea , Fijadores Internos
4.
Pharmaceutics ; 15(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36840012

RESUMEN

Cisplatin (cis-diamminedichloroplatinum(II)) is a potent chemotherapeutic agent commonly used to treat cancer. However, its use also leads to serious side effects, such as nephrotoxicity, ototoxicity, and cardiotoxicity, which limit the dose that can be safely administered to patients. To minimize these problems, dendrimers may be used as carriers for cisplatin through the coordination of their terminal functional groups to platinum. Here, cisplatin was conjugated to half-generation anionic PAMAM dendrimers in mono- and bidentate forms, and their biological effects were assessed in vitro. After preparation and characterization of the metallodendrimers, their cytotoxicity was evaluated against several cancer cell lines (A2780, A2780cisR, MCF-7, and CACO-2 cells) and a non-cancer cell line (BJ cells). The results showed that all the metallodendrimers were cytotoxic and that the cytotoxicity level depended on the cell line and the type of coordination mode (mono- or bidentate). Although, in this study, a correlation between dendrimer generation (number of carried metallic fragments) and cytotoxicity could not be completely established, the monodentate coordination form of cisplatin resulted in lower IC50 values, thus revealing a more accessible cisplatin release from the dendritic scaffold. Moreover, most of the metallodendrimers were more potent than the cisplatin, especially for the A2780 and A2780cisR cell lines, which showed higher selectivity than for non-cancer cells (BJ cells). The monodentate G0.5COO(Pt(NH3)2Cl)8 and G2.5COO(Pt(NH3)2Cl)32 metallodendrimers, as well as the bidentate G2.5COO(Pt(NH3)2)16 metallodendrimer, were even more active towards the cisplatin-resistant cell line (A2780cisR cells) than the correspondent cisplatin-sensitive one (A2780 cells). Finally, the effect of the metallodendrimers on the hemolysis of human erythrocytes was neglectable, and metallodendrimers' interaction with calf thymus DNA seemed to be stronger than that of free cisplatin.

5.
J Mater Chem B ; 10(43): 8945-8959, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36278302

RESUMEN

Dendrimers have been studied as promising materials for the delivery of anticancer drugs. In this work, low-generation (0-2) nitrile poly(alkylidenamine)-based dendrimers were explored as nanocarriers for the organometallic complex [Ru(η5-C5H5)(PPh3)2]+ (RuCp+) and investigated for their anticancer action and involved mechanisms, which were evaluated both in vitro and in vivo. It was observed that their biological behaviour is generation dependent, where the highest generation metallodendrimer (G2Ru) was overall more effective than the other metallodendrimers. G2Ru was active against a set of six cancer cell lines, revealing its important selectivity for these cells (the IC50 values were about 4-fold lower than that for non-cancer cells). Importantly, the in vivo studies with G2Ru in an MCF-7 xenograft mouse model showed that it exhibited low systemic toxicity, low accumulation in the main organs of the mice, preferential accumulation in the tumour, and remarkable capacity to limit tumour growth. The in vitro and in vivo studies revealed that G2Ru caused high levels of cell necrosis and apoptosis. The in vitro cell death mechanism studies showed the capacity of G2Ru to induce mitochondrial depolarization and ROS production. Altogether, pre-clinical results indicated G2Ru as a promising anticancer drug and the potential of low-generation poly(alkylidenamine)-based dendrimers as drug nanocarriers.


Asunto(s)
Antineoplásicos , Dendrímeros , Rutenio , Humanos , Ratones , Animales , Rutenio/farmacología , Dendrímeros/farmacología , Antineoplásicos/farmacología , Apoptosis , Muerte Celular
6.
J Funct Biomater ; 13(2)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35645263

RESUMEN

Currently, cancer chemotherapeutic drugs still have the defects of high toxicity and low bioavailability, so it is critical to design novel drug release systems for cancer chemotherapy. Here, we report a method to fabricate electrospun drug-loaded organic/inorganic hybrid nanofibrous system for antitumor therapy applications. In this work, rod-like attapulgite (ATT) was utilized to load a model anticancer drug doxorubicin (DOX), and mixed with poly(lactic-co-glycolic acid) (PLGA) to form electrospun hybrid nanofibers. The ATT/DOX/PLGA composite nanofibers were characterized through various techniques. It is feasible to load DOX onto ATT surfaces, and the ATT/DOX/PLGA nanofibers show a smooth and uniform morphology with improved mechanical durability. Under neutral and acidic pH conditions, the loaded DOX was released from ATT/DOX/PLGA nanofibers in a sustained manner. In addition, the released DOX from the nanofibers could significantly inhibit the growth of tumor cells. Owing to the significantly reduced burst release profile and increased mechanical durability of the ATT/DOX/PLGA nanofibers, the designed organic-inorganic hybrid nanofibers may hold great promise as a nanoplatform to encapsulate different drugs for enhanced local tumor therapy applications.

7.
Drug Discov Today ; 27(5): 1251-1260, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999213

RESUMEN

Within the nanoparticle (NP) space, dendrimers are becoming increasingly important in the field of nanomedicine, not only to treat human diseases, but also in veterinary medicine, which represents a new therapeutic approach. Major applications include using dendrimers to tackle highly contagious foot-and-mouth disease virus (FMDV) and swine fever virus (SFV) in pigs, FMDV in cattle, hypothermic circulatory arrest (HCA) in dogs, rabies, and H9N2 avian influenza virus in chickens. As we review here, intramuscular (im) subcutaneous (sc), intravenous (iv), and intraperitoneal (ip) routes of administration can be used for the successful application of dendrimers in animals.


Asunto(s)
Dendrímeros , Virus de la Fiebre Aftosa , Fiebre Aftosa , Subtipo H9N2 del Virus de la Influenza A , Animales , Bovinos , Pollos , Perros , Porcinos
8.
Biomacromolecules ; 23(1): 20-33, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34870412

RESUMEN

Although doxorubicin (DOX) is one of the most used chemotherapeutic drugs due to its efficacy against a wide group of cancer types, it presents severe side effects. As such, intensive research is being carried out to find new nanoscale systems that can help to overcome this problem. Polyester dendrimers based on the monomer 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) are very promising systems for biomedical applications due to their biodegradability properties. In this study, bis-MPA-based dendrimers were, for the first time, evaluated as DOX delivery vehicles. Generations 4 and 5 of bis-MPA-based dendrimers with hydroxyl groups at the surface were used (B-G4-OH and B-G5-OH), together with dendrimers partially functionalized with amine groups (B-G4-NH2/OH and B-G5-NH2/OH). Partial functionalization was chosen because the main purpose was to compare the effect of different functional groups on dendrimers' drug delivery behavior without compromising cell viability, which is often affected by dendrimers' cationic charge. Results revealed that bis-MPA-based dendrimers were cytocompatible, independently of the chemical groups that were present at their surface. The B-G4-NH2/OH and B-G5-NH2/OH dendrimers were able to retain a higher number of DOX molecules, but the in vitro release of the drug was faster. On the contrary, the hydroxyl-terminated dendrimers exhibited a lower loading capacity but were able to deliver the drug in a more sustained manner. These results were in accordance with the cytotoxicity studies performed in several models of cancer cell lines and human mesenchymal stem cells. Overall, the results confirmed that it is possible to tune the drug delivery properties of bis-MPA-based dendrimers by modifying surface functionalization. Moreover, molecular modeling studies provided insights into the nature of the interactions established between the drug and the bis-MPA-based dendrimers─DOX molecules attach to their surface rather than being physically encapsulated.


Asunto(s)
Dendrímeros , Cationes/química , Supervivencia Celular , Dendrímeros/química , Dendrímeros/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Sistemas de Liberación de Medicamentos , Humanos , Poliésteres/química
9.
Biomolecules ; 11(9)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34572473

RESUMEN

The aim of this study was to promote bioactivity of the PEEK surface using sulfuric acid and piranha solution. PEEK was functionalized by a sulfuric acid treatment for 90 s and by piranha solution for 60 and 90 s. Chemical modification of the PEEK surface was evaluated by infrared spectroscopy, contact angle analysis, cytotoxicity, cell adhesion and proliferation. The spectroscopy characteristic band associated with sulfonation was observed in all treated samples. PEEK with piranha solution 60 s showed an increase in the intensity of the bands, which was even more significant for the longer treatment (90 s). The introduction of the sulfonic acid functional group reduced the contact angle. In cytotoxicity assays, for all treatments, the number of viable cells was higher when compared to those of untreated PEEK. PEEK treated with sulfuric acid and piranha solution for 60 s were the treatments that showed the highest percentage of cell viability with no statistically significant differences between them. The modified surfaces had a greater capacity for inducing cell growth, indicative of effective cell adhesion and proliferation. The proposed chemical modifications are promising for the functionalization of PEEK-based implants, as they were effective in promoting bioactivation of the PEEK surface and in stimulating cell growth and proliferation.


Asunto(s)
Benzofenonas/química , Polímeros/química , Ácidos Sulfúricos/química , Adhesión Celular , Muerte Celular , Proliferación Celular , Fibroblastos/citología , Humanos , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier
10.
Metabolomics ; 17(8): 72, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389918

RESUMEN

INTRODUCTION: Globally, breast cancer (BC) is leading at the top of women's diseases and, as a multifactorial disease, there is the need for the development of new approaches to aid clinicians on monitoring BC treatments. In this sense, metabolomic studies have become an essential tool allowing the establishment of interdependency among metabolites in biological samples. OBJECTIVE: The combination of nuclear magnetic resonance (NMR) and gas chromatography-quadrupole mass spectrometry (GC-qMS) based metabolomic analyses of urine and breast tissue samples from BC patients and cancer-free individuals was used. METHODS: Multivariate statistical tools were used in order to obtain a panel of metabolites that could discriminate malignant from healthy status assisting in the diagnostic field. Urine samples (n = 30), cancer tissues (n = 30) were collected from BC patients, cancer-free tissues were resected outside the tumor margin from the same donors (n = 30) while cancer-free urine samples (n = 40) where obtained from healthy subjects and analysed by NMR and GC-qMS methodologies. RESULTS: The orthogonal partial least square discriminant analysis model showed a clear separation between BC patients and cancer-free subjects for both classes of samples. Specifically, for urine samples, the goodness of fit (R2Y) and predictive ability (Q2) was 0.946 and 0.910, respectively, whereas for tissue was 0.888 and 0.813, revealing a good predictable accuracy. The discrimination efficiency and accuracy of tissue and urine metabolites was ascertained by receiver operating characteristic curve analysis that allowed the identification of metabolites with high sensitivity and specificity. The metabolomic pathway analysis identified several dysregulated pathways in BC, including those related with lactate, valine, aspartate and glutamine metabolism. Additionally, correlations between urine and tissue metabolites were investigated and five metabolites (e.g. acetone, 3-hexanone, 4-heptanone, 2-methyl-5-(methylthio)-furan and acetate) were found to be significant using a dual platform approach. CONCLUSION: Overall, this study suggests that an improved metabolic profile combining NMR and GC-qMS may be useful to achieve more insights regarding the mechanisms underlying cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Metabolómica , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/orina , Neoplasias de la Mama/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/orina , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Persona de Mediana Edad , Orina/química
11.
Molecules ; 26(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069054

RESUMEN

The DACHPtCl2 compound (trans-(R,R)-1,2-diaminocyclohexanedichloroplatinum(II)) is a potent anticancer drug with a broad spectrum of activity and is less toxic than oxaliplatin (trans-l-diaminocyclohexane oxalate platinum II), with which it shares the active metal fragment DACHPt. Nevertheless, due to poor water solubility, its use as a chemotherapeutic drug is limited. Here, DACHPtCl2 was conjugated, in a bidentate form, with half-generation PAMAM dendrimers (G0.5-G3.5) with carboxylate end-groups, and the resulting conjugates were evaluated against various types of cancer cell lines. In this way, we aimed at increasing the solubility and availability at the target site of DACHPt while potentially reducing the adverse side effects. DNA binding assays showed a hyperchromic effect compatible with DNA helix's disruption upon the interaction of the metallodendrimers and/or the released active metallic fragments with DNA. Furthermore, the prepared DACHPt metallodendrimers presented cytotoxicity in a wide set of cancer cell lines used (the relative potency regarding oxaliplatin was in general high) and were not hemotoxic. Importantly, their selectivity for A2780 and CACO-2 cancer cells with respect to non-cancer cells was particularly high. Subsequently, the anticancer drug 5-FU was loaded in a selected metallodendrimer (the G2.5COO(DACHPt)16) to investigate a possible synergistic effect between the two drugs carried by the same dendrimer scaffold and tested for cytotoxicity in A2780cisR and CACO-2 cancer cell lines. This combination resulted in IC50 values much lower than the IC50 for 5-FU but higher than those found for the metallodendrimers without 5-FU. It seems, thus, that the metallic fragment-induced cytotoxicity dominates over the cytotoxicity of 5-FU in the set of considered cell lines.


Asunto(s)
Antineoplásicos/farmacología , Dendrímeros/química , Fluorouracilo/farmacología , Compuestos Organoplatinos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular Tumoral , ADN/metabolismo , Dendrímeros/síntesis química , Liberación de Fármacos , Fluorouracilo/síntesis química , Fluorouracilo/química , Humanos , Concentración 50 Inhibidora , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Espectroscopía de Protones por Resonancia Magnética , Espectrofotometría Ultravioleta , Electricidad Estática , Termodinámica
12.
J Zhejiang Univ Sci B ; 22(6): 450-461, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34128369

RESUMEN

In this study, the fibers of invasive species Agave americana L. and Ricinus communis L. were successfully used for the first time as new sources to produce cytocompatible and highly crystalline cellulose nanofibers. Cellulose nanofibers were obtained by two methods, based on either alkaline or acid hydrolysis. The morphology, chemical composition, and crystallinity of the obtained materials were characterized by scanning electron microscopy (SEM) together with energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The crystallinity indexes (CIs) of the cellulose nanofibers extracted from A. americana and R. communis were very high (94.1% and 92.7%, respectively). Biological studies evaluating the cytotoxic effects of the prepared cellulose nanofibers on human embryonic kidney 293T (HEK293T) cells were also performed. The nanofibers obtained using the two different extraction methods were all shown to be cytocompatible in the concentration range assayed (i.e., 0|‒|500 µg/mL). Our results showed that the nanocellulose extracted from A. americana and R. communis fibers has high potential as a new renewable green source of highly crystalline cellulose-based cytocompatible nanomaterials for biomedical applications.


Asunto(s)
Agave/química , Celulosa/ultraestructura , Especies Introducidas , Nanofibras/ultraestructura , Ricinus/química , Agave/ultraestructura , Supervivencia Celular/efectos de los fármacos , Celulosa/análisis , Celulosa/aislamiento & purificación , Células HEK293 , Humanos , Microscopía Electrónica de Rastreo , Ricinus/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
13.
Biomacromolecules ; 22(6): 2436-2450, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34009977

RESUMEN

Carbon dots (CDs) and G4-G6 (polyamidoamine)PAMAM-NH2 dendrimers were self-assembled to produce CDs@PAMAM nanohybrids for transfection and bioimaging purposes. CDs were synthesized by the hydrothermal method, using ascorbic acid as a starting precursor and characterized by transmission electron microscopy, UV-Vis, and fluorescence (in solution and solid-state) techniques. CDs were electrostatically combined with PAMAM dendrimers at room temperature, and the UV-Vis, fluorescence, and NMR spectroscopies were used to confirm the self-assembly. When compared to pristine CDs, nanohybrids were more photostable, resisting high acidic and basic pH. Moreover, they were considerably internalized by cells, as assessed by flow cytometry and fluorescence microscopy, and, when excited, displayed multi-color emission easily quantified and visualized. These nanoscale hybrids, coined hybridplexes, can condense pDNA and transfecting cells successfully, particularly the G5 CDs@PAMAM nanohybrids. In summary, CDs prepared in mild and smooth lab conditions, showing good optical properties, were used to prepare elegantly CDs@PAMAM nanohybrids with promising biomedical applications.


Asunto(s)
Dendrímeros , Carbono , Técnicas de Transferencia de Gen , Transfección
14.
Eur J Med Chem ; 219: 113456, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33878563

RESUMEN

Research to develop active dendrimers by themselves or as nanocarriers represents a promising approach to discover new biologically active entities that can be used to tackle unmet medical needs including difficult diseases. These developments are possible due to the exceptional physicochemical properties of dendrimers, including their biocompatibility, as well as their therapeutic activity as nanocarriers and drugs themselves. Despite a large number of academic studies, very few dendrimers have crossed the 'valley of death' between. Only a few number of pharmaceutical companies have succeeded in this way. In fact, only Starpharma (Australia) and Orpheris, Inc. (USA), an Ashvattha Therapeutics subsidiary, can fill all the clinic requirements to have in the market dendrimers based drugs/nancocarriers. After evaluating the main physicochemical properties related to the respective biological activity of dendrimers classified as first-in-class or best-in-class in nanomedicine, this original review analyzes the advantages and disavantages of these two strategies as well the concerns to step in clinical phases. Various solutions are proposed to advance the use of dendrimers in human health.


Asunto(s)
Dendrímeros/química , Nanomedicina , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Dendrímeros/metabolismo , Portadores de Fármacos/química , Liberación de Fármacos , Semivida , Humanos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo
15.
Bioact Mater ; 6(10): 3358-3382, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33817416

RESUMEN

Cancer immunotherapy is an effective antitumor approach through activating immune systems to eradicate tumors by immunotherapeutics. However, direct administration of "naked" immunotherapeutic agents (such as nucleic acids, cytokines, adjuvants or antigens without delivery vehicles) often results in: (1) an unsatisfactory efficacy due to suboptimal pharmacokinetics; (2) strong toxic and side effects due to low targeting (or off-target) efficiency. To overcome these shortcomings, a series of polysaccharide-based nanoparticles have been developed to carry immunotherapeutics to enhance antitumor immune responses with reduced toxicity and side effects. Polysaccharides are a family of natural polymers that hold unique physicochemical and biological properties, as they could interact with immune system to stimulate an enhanced immune response. Their structures offer versatility in synthesizing multifunctional nanocomposites, which could be chemically modified to achieve high stability and bioavailability for delivering therapeutics into tumor tissues. This review aims to highlight recent advances in polysaccharide-based nanomedicines for cancer immunotherapy and propose new perspectives on the use of polysaccharide-based immunotherapeutics.

16.
J Control Release ; 332: 346-366, 2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-33675878

RESUMEN

Nanomedicine represents a very significant contribution in current cancer treatment; in addition to surgical intervention, radiation and chemotherapeutic agents that unfortunately also kill healthy cells, inducing highly deleterious and often life-threatening side effects in the patient. Of the numerous nanoparticles used against cancer, gold nanoparticles had been developed for therapeutic applications. Inter alia, a large variety of dendrimers, i.e. soft artificial macromolecules, have turned up as non-viral functional nanocarriers for entrapping drugs, imaging agents, and targeting molecules. This review will provide insights into the design, synthesis, functionalization, and development in biomedicine of engineered functionalized hybrid dendrimer-tangled gold nanoparticles in the domain of cancer theranostic. Several aspects are highlighted and discussed such as 1) dendrimer-entrapped gold(0) hybrid nanoparticles for the targeted imaging and treatment of cancer cells, 2) dendrimer encapsulating gold(0) nanoparticles (Au DENPs) for the delivery of genes, 3) Au DENPs for drug delivery applications, 4) dendrimer encapsulating gold radioactive nanoparticles for radiotherapy, and 5) dendrimer/dendron-complexed gold(III) nanoparticles as technologies to take down cancer cells.


Asunto(s)
Dendrímeros , Nanopartículas del Metal , Neoplasias , Preparaciones Farmacéuticas , Oro , Humanos , Neoplasias/tratamiento farmacológico , Medicina de Precisión
17.
Materials (Basel) ; 13(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172010

RESUMEN

Chitosan solubility in aqueous organic acids has been widely investigated. However, most of the previous works have been done with plasticized chitosan films and using acetic acid as the film casting solvent. In addition, the properties of these films varied among studies, since they are influenced by different factors such as the chitin source used to produce chitosan, the processing variables involved in the conversion of chitin into chitosan, chitosan properties, types of acids used to dissolve chitosan, types and amounts of plasticizers and the film preparation method. Therefore, this work aimed to prepare chitosan films by the solvent casting method, using chitosan derived from Litopenaeus vannamei shrimp shell waste, and five different organic acids (acetic, lactic, maleic, tartaric, and citric acids) without plasticizer, in order to evaluate the effect of organic acid type and chitosan source on physicochemical properties, degradation and cytotoxicity of these chitosan films. The goal was to select the best suited casting solvent to develop wound dressing from shrimp chitosan films. Shrimp chitosan films were analyzed in terms of their qualitative assessment, thickness, water vapor permeability (WVP), water vapor transmission rate (WVTR), wettability, tensile properties, degradation in phosphate buffered saline (PBS) and cytotoxicity towards human fibroblasts using the resazurin reduction method. Regardless of the acid type employed in film preparation, all films were transparent and slightly yellowish, presented homogeneous surfaces, and the thickness was compatible with the epidermis thickness. However, only the ones prepared with maleic acid presented adequate characteristics of WVP, WVTR, wettability, degradability, cytotoxicity and good tensile properties for future application as a wound dressing material. The findings of this study contributed not only to select the best suited casting solvent to develop chitosan films for wound dressing but also to normalize a solubilization protocol for chitosan, derived from Litopenaeus vannamei shrimp shell waste, which can be used in the pharmaceutical industry.

18.
J Mater Chem B ; 8(45): 10314-10326, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33146227

RESUMEN

Like other bionanomaterials, dendrimers are usually labelled with fluorescent compounds in order to be optically detected within cells. However, this process can interfere with their biological properties, so it is crucial to find other solutions for their traceability. Here, the blue intrinsic fluorescence of amine-terminated poly(amidoamine) (PAMAM) dendrimers was enhanced using oxidative treatment with ammonium persulfate (APS). The effects of dendrimer generation (G3, G4, and G5) and pH on the spectroscopic behavior of both pristine and APS-treated PAMAM dendrimers were studied in aqueous solution. Overall, the results pointed out that there are at least two types of emitting electron-rich hetero-atomic sub-luminophores (HASLs) confined within the dendrimer scaffold that have very close maximum emission wavelengths and whose emission properties strongly depend on pH. The APS treatment significantly enhanced the fluorescence intensity by leading to the protonation of the interior of the dendrimer. However, fluorescence intensity was not only dependent on the number of HASLs in the dendrimer scaffold (i.e., on dendrimer generation), but also on the rigidification suffered by the dendrimer due to the acidic environment (at low pH values, APS-treated G4 was indeed the most emissive species). Moreover, photoluminescence studies with lyophilized samples were also conducted, which confirmed the coexistence of more than one type of HASLs emitting in the dendrimer structure. The APS treatment affected these HASLs to a different extent. Time-resolved fluorescence experiments always showed higher average lifetimes of HASLs for APS-treated dendrimers than for pristine ones, in accordance with the fluorescence intensity results. On the other hand, the fraction and lifetimes of HASLs in APS-treated dendrimers were similar in solution and the lyophilized form. This behaviour was different for the pristine dendrimers that presented increased luminescence upon aggregation. Finally, the highly emissive oxidized dendrimers were shown not only to be much less cytotoxic and hemotoxic than pristine dendrimers but also to be detectable inside cells upon excitation with UV light.


Asunto(s)
Materiales Biocompatibles/química , Dendrímeros/química , Colorantes Fluorescentes/química , Animales , Línea Celular Tumoral , Fluorescencia , Humanos , Ratones , Células 3T3 NIH , Oxidación-Reducción
19.
Carbohydr Polym ; 247: 116749, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32829865

RESUMEN

To enhance the drug delivery efficiency of hyaluronic acid (HA), we designed and prepared glycodendron and pyropheophorbide-a (Ppa)-functionalized HA (HA-Ppa-Dendron) as a nanosystem for cancer photodynamic therapy. Linear Ppa-modified HA (HA-Ppa) was also prepared as a control. Cellular uptake of both polymers by MDA-MB-231 cells led to mitochondrial dysfunction and generation of reactive oxygen species under the irradiation of a laser. Compared to the linear polymer, HA-Ppa-Dendron had higher molecular weight, a more compact nanoscale particle size, and a dendritic structure, resulting in a much longer blood circulation time and higher tumor accumulation. HA-Ppa-Dendron outperformed HA-Ppa in inhibiting cell growth, with 60 % of tumors was eradicated under laser irradiation. Tumor growth inhibition (TGI) up to 99.2 % was achieved from HA-Ppa-Dendron, which was much higher than that of HA-Ppa (50.6 %). Therefore, glycodendron-functionalized HAs by integration of HA and dendritic polymers may act as efficient anti-cancer nanomedicine.


Asunto(s)
Antracenos/química , Neoplasias de la Mama/tratamiento farmacológico , Clorofila/análogos & derivados , Ácido Hialurónico/química , Nanopartículas/administración & dosificación , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Clorofila/química , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Fármacos Fotosensibilizantes/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Bioconjug Chem ; 31(3): 907-915, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32096990

RESUMEN

Development of versatile nanoplatforms for cancer theranostics remains a hot topic in the area of nanomedicine. We report here a general approach to create polyethylenimine (PEI)-based hybrid nanogels (NGs) incorporated with ultrasmall iron oxide (Fe3O4) nanoparticles (NPs) and doxorubicin for T1-weighted MR imaging-guided chemotherapy of tumors. In this study, PEI NGs were first prepared using an inverse emulsion approach along with Michael addition reaction to cross-link the NGs, modified with citric acid-stabilized ultrasmall Fe3O4 NPs through 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC) coupling, and physically loaded with anticancer drug doxorubicin (DOX). The formed hybrid NGs possess good water dispersibility and colloidal stability, excellent DOX loading efficiency (51.4%), pH-dependent release profile of DOX with an accelerated release rate under acidic pH, and much higher r1 relaxivity (2.29 mM-1 s-1) than free ultrasmall Fe3O4 NPs (1.15 mM-1 s-1). In addition, in contrast to the drug-free NGs that possess good cytocompatibility, the DOX-loaded hybrid NGs display appreciable therapeutic activity and can be taken up by cancer cells in vitro. With these properties, the developed hybrid NGs enabled effective inhibition of tumor growth under the guidance of T1-weighted MR imaging. The developed hybrid NGs may be applied as a versatile nanoplatform for MR imaging-guided chemotherapy of tumors.


Asunto(s)
Doxorrubicina/química , Compuestos Férricos/química , Imagen por Resonancia Magnética , Nanogeles/química , Nanopartículas/química , Tamaño de la Partícula , Polietileneimina/química , Animales , Línea Celular Tumoral , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Liberación de Fármacos , Cinética , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...